top of page

La simplicidad de la formula de Koide

  • Foto del escritor: Alejandro Rivero
    Alejandro Rivero
  • 20 jun 2023
  • 2 Min. de lectura

  He vuelto a mirar el preprint de 1981 y en terminos de Koide la formula es extremadamente sencilla, incluso se puede argumentar que es lo siguiente a que sean todas las masas cero. La idea de Koide es dar, entre otras, una formula de masas para los leptones cargados, $$m_{e_i} \propto (z_0 + z_i)^2$$ donde los componentes cumplen las condiciones

$$z_1+z_2+z_3=0$$ $$\frac 13(z_1^2+z_2^2+z_3^2)=z_0^2$$

Ahora bien, la primera condicion en si misma es muy potente. Su cuadrado

permite eliminar terminos cruzados, y su aplicacion en la suma de masas nos dice inmediatamente que

$$\sum m_i = 3z_0^2 + (z_1^2+z_2^2+z_3^2) $$

En cierto modo la suma de masas es la norma del vector de valores singulares de alguna matriz

que construye via

la matriz de masas. Suena a supersimetria pero tambien valdria la descomposicion de Cholesky. Salvando lo peregrino de la idea de ver los autovalores de una matriz, o los valores singulares, como un vector… lo que importa aqui es la idea de que queremos formar la suma de sus cuadrados. En cuanto a la segunda condicion, vemos con el signo cambiado resolveria a cero las tres masas. De la manera postulada, lo que hace es que la traza de la matriz de masas sea simplemente

En el analisis fenomenologico explotamos la idea de ortogonalidad para definir una tripleta complementaria a la de Harari-Haut-Wylers. Recordemos que esta tripleta tiene masas $$0, 1-{\sqrt 3 \over 2}, 1+{\sqrt 3 \over 2}$$ Construiamos una segunda tripleta $$4, 1+{\sqrt 3 \over 2}, 1-{\sqrt 3 \over 2}$$ argumentando que sus raices eran ortogonales, y observabamos que era bastante cercana a la tripleta experimental de los leptones cargados (y por ende, a la de los mesones).

Podriamos argumentar que la nocion de ortogonalidad implica la existencia de una tercera tripleta. Esto es porque si tenemos dos tuplas

que cumplen la primera condicion de Koide, su producto automaticamente cumple $$3 z_0 w_0 + (z_1 w_1+z_2 w_2+z_3 w_3) =0$$ y por tanto al combinarlo con la segunda condicion obtenemos que $$ 3 (z_0+w_0)^2 – \sum (z_i-w_i)^2 = 0$$ y de aqui la tercera tripleta asociada a esta «ortogonalidad»,

. En este caso concreto vuelve a aparecer una masa cero y por tanto reproducimos simplemente la tripleta original, escalada.

Respecto a esta coincidencia de los valores de las masas, la esperanza era que no fuera accidental y se correspondiera a alguno de los mecanismos de preservacion de supersimetria, pero es dificil dar una formulacion tan solo con matrices discretas.

Entradas recientes

Ver todo
Mass Gap from Kaluza Klein

This is just a series of proposed blog posts from chatGPT, each in separate markdown format See also https://chatgpt.com/c/6953f699-3088-832d-8e4f-9104a9264251

 
 
 
vLLM con ray a mano

#necesarioexport SSL_CERT_FILE=/fs/agustina/arivero/supercomplex/.local/lib/python3.11/site-packages/certifi/cacert.pem export RAY_NODE_MANAGER_HEARTBEAT_TIMEOUT_MILLISECONDS=20000 # 20 seconds expor

 
 
 

Comentarios


Never Miss a Post. Subscribe Now!

I'm a paragraph. Click here to add your own text and edit me. It's easy.

Thanks for submitting!

© 2035 by Kathy Schulders. Powered and secured by Wix

  • Grey Twitter Icon
bottom of page